SOLUBILITY EQUILIBRIA (\(K_{sp}\), THE SOLUBILITY PRODUCT)

- Saturated solutions of salts are another type of chemical equilibria. Remember those solubility rules? The fine print said that “soluble” is defined as 3.0 g salt dissolving in 100 g water. What if 2.9 g dissolves? We call it “insoluble”, but a good bit does actually dissolve. So, “insoluble” is not an absolute term.
 - Slightly soluble salts establish a dynamic equilibrium with the hydrated cations and anions in solution.
 - When the solid is first added to water, no ions are initially present.
 - As dissolution proceeds, the concentration of ions increases until equilibrium is established. This occurs when the solution is saturated.
 - The equilibrium constant, the \(K_{sp}\), is no more than the product of the ions in solution. (Remember, solids do not appear in equilibrium expressions.)
 - For a saturated solution of AgCl, the equation would be:
 \[\text{AgCl}(s) \rightleftharpoons \text{Ag}^+(aq) + \text{Cl}^-(aq) \]

- The solubility product expression would be:
 \[K_{sp} = [\text{Ag}^+] [\text{Cl}^-] \]
- The AgCl(s) is left out since solids are left out of equilibrium expressions (constant concentrations).

<table>
<thead>
<tr>
<th>Ionic Solid</th>
<th>(K_{sp}) (at 25°C)</th>
<th>Ionic Solid</th>
<th>(K_{sp}) (at 25°C)</th>
<th>Ionic Solid</th>
<th>(K_{sp}) (at 25°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluorides</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BaF₂</td>
<td>(2.4 \times 10^{-5})</td>
<td>Hg₂CrO₄⁺</td>
<td>(2 \times 10^{-9})</td>
<td>Co(OH)₂</td>
<td>(2.5 \times 10^{-16})</td>
</tr>
<tr>
<td>MgF₂</td>
<td>(6.4 \times 10^{-9})</td>
<td>BaCO₃</td>
<td>(8.5 \times 10^{-11})</td>
<td>Ni(OH)₂</td>
<td>(1.6 \times 10^{-16})</td>
</tr>
<tr>
<td>PbF₂</td>
<td>(4 \times 10^{-8})</td>
<td>Ag₂CrO₄⁺</td>
<td>(9.0 \times 10^{-12})</td>
<td>Zn(OH)₂</td>
<td>(4.5 \times 10^{-17})</td>
</tr>
<tr>
<td>SrF₂</td>
<td>(7.9 \times 10^{-10})</td>
<td>PbCO₃</td>
<td>(2 \times 10^{-16})</td>
<td>Cu(OH)₂</td>
<td>(1.6 \times 10^{-19})</td>
</tr>
<tr>
<td>CaF₂</td>
<td>(4 \times 10^{-11})</td>
<td>Carbonates</td>
<td></td>
<td>Hg(OH)₂</td>
<td>(3 \times 10^{-26})</td>
</tr>
<tr>
<td>Chlorides</td>
<td></td>
<td>NiCO₃</td>
<td>(1.4 \times 10^{-7})</td>
<td>Sn(OH)²⁺</td>
<td>(3 \times 10^{-27})</td>
</tr>
<tr>
<td>PbCl₂</td>
<td>(1.6 \times 10^{-5})</td>
<td>CaCO₃</td>
<td>(8.7 \times 10^{-9})</td>
<td>Al(OH)₃</td>
<td>(2 \times 10^{-32})</td>
</tr>
<tr>
<td>AgCl</td>
<td>(1.6 \times 10^{-10})</td>
<td>BaCO₃</td>
<td>(1.6 \times 10^{-9})</td>
<td>Fe(OH)²⁺</td>
<td>(4 \times 10^{-38})</td>
</tr>
<tr>
<td>Hg₂Cl₄⁺</td>
<td>(1.1 \times 10^{-18})</td>
<td>SrCO₃</td>
<td>(7 \times 10^{-10})</td>
<td>Co(OH)₂</td>
<td>(2.5 \times 10^{-43})</td>
</tr>
<tr>
<td>Bromides</td>
<td></td>
<td>Cu₃PO₄⁺</td>
<td>(2 \times 10^{-10})</td>
<td>Sulfides</td>
<td></td>
</tr>
<tr>
<td>PbBr₂</td>
<td>(4.6 \times 10^{-6})</td>
<td>MnCO₃</td>
<td>(8.8 \times 10^{-11})</td>
<td>MnS</td>
<td>(2.3 \times 10^{-13})</td>
</tr>
<tr>
<td>AgBr</td>
<td>(5.0 \times 10^{-13})</td>
<td>FeCO₃</td>
<td>(2.1 \times 10^{-11})</td>
<td>FeS</td>
<td>(3.7 \times 10^{-19})</td>
</tr>
<tr>
<td>Hg₂Br₄⁺</td>
<td>(1.3 \times 10^{-22})</td>
<td>Ag₂CO₃⁺</td>
<td>(8.1 \times 10^{-12})</td>
<td>NiS</td>
<td>(3 \times 10^{-21})</td>
</tr>
<tr>
<td>Isolides</td>
<td></td>
<td>CdCO₃</td>
<td>(5.2 \times 10^{-12})</td>
<td>CoS</td>
<td>(5 \times 10^{-22})</td>
</tr>
<tr>
<td>Pb₂⁺</td>
<td>(1.4 \times 10^{-8})</td>
<td>Pb₃O₄⁺⁺</td>
<td>(1 \times 10^{-15})</td>
<td>ZnS</td>
<td>(2.3 \times 10^{-22})</td>
</tr>
<tr>
<td>Ag⁺</td>
<td>(1.5 \times 10^{-16})</td>
<td>MgCO₃⁺⁺</td>
<td>(1 \times 10^{-15})</td>
<td>SnS</td>
<td>(1 \times 10^{-26})</td>
</tr>
<tr>
<td>Hg₂I₄⁺⁺</td>
<td>(4.5 \times 10^{-29})</td>
<td>Hg₂CO₃⁺⁺</td>
<td>(9 \times 10^{-15})</td>
<td>CaS</td>
<td>(1.0 \times 10^{-28})</td>
</tr>
<tr>
<td>Sulfates</td>
<td></td>
<td>Ba(OH)₂⁺⁺</td>
<td>(5 \times 10^{-3})</td>
<td>PbS</td>
<td>(7 \times 10^{-29})</td>
</tr>
<tr>
<td>CaSO₄</td>
<td>(6.1 \times 10^{-9})</td>
<td>Sr(OH)₂⁺⁺</td>
<td>(3.2 \times 10^{-4})</td>
<td>Ag₂S</td>
<td>(1.6 \times 10^{-49})</td>
</tr>
<tr>
<td>Ag₂SO₄</td>
<td>(1.2 \times 10^{-5})</td>
<td>Ca(OH)₂⁺⁺</td>
<td>(1.3 \times 10^{-16})</td>
<td>HgS</td>
<td>(1.6 \times 10^{-54})</td>
</tr>
<tr>
<td>SnSO₄</td>
<td>(3.2 \times 10^{-7})</td>
<td>AgOH⁺⁺</td>
<td>(2.0 \times 10^{-5})</td>
<td>Phosphates</td>
<td></td>
</tr>
<tr>
<td>PbSO₄</td>
<td>(1.3 \times 10^{-8})</td>
<td>Mg(OH)₂⁺⁺</td>
<td>(8.9 \times 10^{-12})</td>
<td>Ag₃PO₄⁺⁺</td>
<td>(1.8 \times 10^{-18})</td>
</tr>
<tr>
<td>BaSO₄</td>
<td>(1.5 \times 10^{-9})</td>
<td>Mn(OH)₂⁺⁺</td>
<td>(2 \times 10^{-13})</td>
<td>Sr₃PO₄⁺⁺</td>
<td>(1 \times 10^{-31})</td>
</tr>
<tr>
<td>Chromates</td>
<td></td>
<td>Cd(OH)₂⁺⁺</td>
<td>(5.9 \times 10^{-15})</td>
<td>Ca₃PO₄⁺⁺</td>
<td>(1.3 \times 10^{-32})</td>
</tr>
<tr>
<td>Sr₂CrO₄⁺⁺</td>
<td>(3.6 \times 10^{-5})</td>
<td>Pb(OH)₂⁺⁺</td>
<td>(1.2 \times 10^{-15})</td>
<td>Ba₃PO₄⁺⁺</td>
<td>(6 \times 10^{-39})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fe(OH)₂⁺⁺</td>
<td>(1.8 \times 10^{-35})</td>
<td>Pb₃O₄⁺⁺</td>
<td>(1 \times 10^{-54})</td>
</tr>
</tbody>
</table>

\(^{a}\) Contains Hg₂⁺⁺ ions. \(K = [\text{Hg}_2^{2+}] [X^{-}]^2\) for Hg₂X₂ salts, for example.
You can find loads of K_{sp} values on tables contained in any text. Look up a table of K_{sp} values in your text and write the K_{sp} expression and value for the following salts:

$$\text{CaF}_2(s) \rightleftharpoons \text{Ca}^{+2} + 2 \text{F}^- \quad K_{sp} =$$

$$\text{Ag}_2\text{SO}_4(s) \rightleftharpoons 2 \text{Ag}^+ + \text{SO}_4^{2-} \quad K_{sp} =$$

$$\text{Bi}_2\text{S}_3(s) \rightleftharpoons 2 \text{Bi}^{+3} + 3 \text{S}^2- \quad K_{sp} =$$

DETERMINING K_{sp} FROM EXPERIMENTAL MEASUREMENTS

In practice, K_{sp} is determined by careful laboratory measurements using various spectroscopic methods.

- Remember STOICHIOMETRY!!
- Example: Lead(II) chloride dissolves to a slight extent in water according to the equation:

$$\text{PbCl}_2 \rightleftharpoons \text{Pb}^{+2} + 2 \text{Cl}^-$$

- Calculate the K_{sp} if the lead ion concentration has been found to be $1.62 \times 10^{-2} M$.
- *If the lead ion concentration is “x” then chloride’s concentration is “$2x$”. Also note that the “molar solubility” is equal to “x” since the coefficient on the salt is “1” (think stoichiometry!). So….*

$$K_{sp} = (1.62 \times 10^{-2})(3.24 \times 10^{-2})^2 = 1.70 \times 10^{-5}$$

Exercise 1 **Calculating K_{sp} from Solubility I**

Copper(I) bromide has a measured molar solubility of 2.0×10^{-4} mol/L at 25°C. Calculate its K_{sp} value.

$$K_{sp} = 4.0 \times 10^{-8}$$
Exercise 2 Calculating K_{sp} from Solubility II

Calculate the K_{sp} value for bismuth sulfide (Bi$_2$S$_3$), which has a molar solubility of 1.0×10^{-15} mol/L at 25°C.

\[K_{sp} = 1.1 \times 10^{-73} \]

ESTIMATING SALT SOLUBILITY FROM K_{sp}

- Example: The K_{sp} for CaCO$_3$ is 3.8×10^{-9} @ 25°C. Calculate the molar solubility of calcium carbonate in pure water in a) moles per liter & b) grams per liter:

 - The relative solubilities can be deduced by comparing values of K_{sp} BUT, BE CAREFUL!
 - These comparisons can only be made for salts having the same ION:ION ratio.
 - Please don’t forget solubility changes with temperature! Some substances become less soluble in cold while some become more soluble!

Exercise 3 Calculating Solubility from K_{sp}

The K_{sp} value for copper(II) iodate, Cu(IO$_3$)$_2$, is 1.4×10^{-7} at 25°C. Calculate its solubility at 25°C.

\[= 3.3 \times 10^{-3} \text{ mol/L} \]
SOLUBILITY AND THE COMMON ION EFFECT

The presence of a common ion will cause the equilibrium to shift so that even less of the substance with the smaller K_{sp} value will dissolve.

- Experiment shows that the solubility of any salt is always less in the presence of a “common ion”. WHY?
- LeChatelier’s Principle, that’s why! Be reasonable and use approximations when you can!!
- pH can also affect solubility. Evaluate the equation to see who would want to “react” with the addition of acid or base.
- Would magnesium hydroxide be more soluble in an acid or a base? Why?

$$\text{Mg(OH)}_2(s) \rightleftharpoons \text{Mg}^{2+} \text{(aq)} + 2 \text{OH}^- \text{(aq)}$$
(milk of magnesia)

Exercise 4
Solubility and Common Ions

Calculate the solubility of solid CaF$_2$ ($K_{sp} = 4.0 \times 10^{-11}$) in a 0.025 M NaF solution.

$$= 6.4 \times 10^{-8} \text{ mol/L}$$

- K_{sp} AND THE REACTION QUOTIENT, Q

- With some knowledge of the reaction quotient, we can decide
 - whether a ppt will form at the conditions given AND
 - calculate the concentrations of ions required to begin the ppt. of an insoluble salt

1. $Q < K_{sp}$, the system is not at equil. (unsaturated)
2. $Q = K_{sp}$, the system is at equil. (saturated)
3. $Q > K_{sp}$, the system is not at equil. (supersaturated)

Precipitates form when the solution is supersaturated!!!
- Precipitation of insoluble salts
 - Metal-bearing ores often contain the metal in the form of an insoluble salt, and, to complicate matters, the ores often contain several such metal salts.
 - Dissolve the metal salts to obtain the metal ion, concentrate in some manner, and ppt. selectively only one type of metal ion as an insoluble salt.

Exercise 5 Determining Precipitation Conditions

A solution is prepared by adding 750.0 mL of $4.00 \times 10^{-3} \, M \, \text{Ce(NO}_3\text{)}_3$ to 300.0 mL of $2.00 \times 10^{-2} \, M \, \text{KIO}_3$. Will Ce(IO$_3$)$_3$ ($K_{sp} = 1.9 \times 10^{-10}$) precipitate from this solution?

Exercise 6 Precipitation

A solution is prepared by mixing 150.0 mL of $1.00 \times 10^{-2} \, M \, \text{Mg(NO}_3\text{)}_2$ and 250.0 mL of $1.00 \times 10^{-1} \, M \, \text{NaF}$. Calculate the concentrations of Mg$^{2+}$ and F$^{-}$ at equilibrium with solid MgF$_2$ ($K_{sp} = 6.4 \times 10^{-9}$).

$[\text{Mg}^{2+}] = 2.1 \times 10^{-6} \, M$

$[\text{F}^{-}] = 5.50 \times 10^{-2} \, M$
QUALITATIVE ANALYSIS (a favorite lab question topic on the AP Exam!)

- A Qualitative Analysis Scheme introduces you to the basic chemistry of various ions
- It also illustrates how the principles of chemical equilibria can be applied.

Objective: Separate the following metal ions: silver, lead, cadmium and nickel

- Adding HCl causes silver and lead to ppt. (Aren’t you glad you now know your solubility rules?) while nickel and cadmium will stay in solution.
- Separate nickel and cadmium by filtration.
- Add HOT water to the ppts and filter while HOT and the lead(II) chloride will redissolve.
- Separate the chloride ppts by filtration.
- Separating Cd and Ni is more subtle. We use their sulfide K_{sp} values to determine which sulfide precipitates first!

Exercise 7

Selective Precipitation

A solution contains $1.0 \times 10^{-4} \, M \, Cu^+$ and $2.0 \times 10^{-3} \, M \, Pb^{2+}$. If a source of I^- is added gradually to this solution, will PbI$_2$ ($K_{sp} = 1.4 \times 10^{-8}$) or CuI ($K_{sp} = 5.3 \times 10^{-12}$) precipitate first? Specify the concentration of I^- necessary to begin precipitation of each salt.

CuI will precipitate first

Concentration in excess of $5.3 \times 10^{-8} \, M$ required
ACID BASE AND PPT. EQUILIBRIA OF PRACTICAL SIGNIFICANCE

SOLUBILITY OF SALTS IN WATER AND ACIDS

- the solubility of PbS in water:
 \[\text{PbS (s)} \rightleftharpoons \text{Pb}^{2+} + \text{S}^{2-} \]
 \[K_{sp} = 8.4 \times 10^{-28} \]

- the hydrolysis of the S\(^{2-}\) ion in water:
 \[\text{S}^{2-} + \text{H}_2\text{O} \rightleftharpoons \text{HS}^- + \text{OH}^- \]
 \[K_b = 0.077 \]

Overall process:
\[\text{PbS + H}_2\text{O} \rightleftharpoons \text{Pb}^{2+} + \text{HS}^- + \text{OH}^- \]
\[K_{total} = K_{sp} \times K_b = 6.5 \times 10^{-29} \]

- May not seem like much but it can increase the environmental lead concentration by a factor of about 10,000 over the solubility of PbS calculated from simply \(K_{sp} \)!

- Any salt containing an anion that is the conjugate base of a weak acid will dissolve in water to a greater extent than given by the \(K_{sp} \).

- This means salts of sulfate, phosphate, acetate, carbonate, and cyanide, as well as sulfide can be affected. If a strong acid is added to water-insoluble salts such as ZnS or CaCO\(_3\) then hydroxide ions from the anion hydrolysis is removed by the formation of water. This shifts the anion hydrolysis further to the right; the weak acid is formed and the salt dissolves.

- Carbonates and many metal sulfides along with metal hydroxides are generally soluble in strong acids.

- The only exceptions are sulfides of mercury, copper, cadmium and a few others.

- Insoluble inorganic salts containing anions derived from weak acids tend to be soluble in solutions of strong acids.

- Salts are not soluble in strong acid if the anion is the conjugate base of a strong acid!!